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Single nucleotide polymorphisms and haplotypes in the
IL10 region associated with HCV clearance
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Hepatitis C virus (HCV) is an infectious blood-borne pathogen that usually persists as a chronic infection. However,
approximately 15% of the time, patients can clear the virus, indicating that host differences could be critical in determining the
course of HCV infection. The inflammatory response is crucial to resolving or failing to resolve an acute HCV infection. Some
previous reports have implicated interleukin 10 (IL10) polymorphisms with successful anti-HCV therapy and natural viral
clearance. We tested 54 single nucleotide polymorphisms (SNPs) in the IL10 region (7300 kb and 24 within the IL10 gene
itself), which contains 13 genes including the IL10 immunomodulatory paralogs IL19, IL20, and IL24, for association with HCV
clearance vs persistence. SNPs from two haplotype block regions, one at IL10 and the other from IL19/IL20, were associated
with HCV clearance in African Americans (91 clearance cases and 183 chronically infected matched controls; P¼ 0.05–0.002)
while with expectation-maximization algorithm-reconstructed haplotypes, these associations remained (P¼ 0.05–0.002).
However, no significant associations were detected in European Americans (108 clearance and 245 chronic). Our results
indicate that variants of the immunomodulatory IL10 and IL19/IL20 genes may be involved in natural clearance of HCV in the
African-American population.
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Introduction

The hepatitis C virus (HCV), an RNA virus from the
Flaviviridae family,1 is the most common chronic blood-
borne pathogen in the United States. HCV is transmitted
by percutaneous exposure to contaminated blood,
perinatal exposure from a mother to her infant, un-
protected sexual intercourse, and poor medical care
practices in developing nations.2 Drug use has consis-
tently accounted for a substantial proportion of HCV
infections and currently accounts for 60% of HCV
transmission while sexual exposures account for up to
20%.3 There are 3.9 million HCV-infected people in the
United States alone, with an estimated prevalence of
1.8%.3 While the annual incidence of new infections in
the United States has decreased more than 80% in the last
decade, chronic hepatitis still results in as many as 10 000
deaths per year because of the latency of developing
complications.4 HCV infection is also a common problem

worldwide, with at least 170 million people infected.4

The estimated annual total cost for HCV treatment in the
United States in 2003 was between $129 and $514 million.
The total cost of treating HCV infection, including
pharmaceutical costs and outpatient therapy, was esti-
mated to be $693 million. Overall, the total economic
impact of the disease in the United States is between $1
and $1.3 billion per year and is considerably more
worldwide.5,6

HCV infection sometimes results in clearance (15%),7 a
state that is recognized when HCV RNA cannot be
detected in multiple blood samples from a patient with
HCV-specific antibodies.1 HCV clearance is known to
occur less often in blacks people, alcohol users, and HIV-
infected persons.7,8 In the chronic state, the infection may
progress to cirrhosis with the subsequent development of
complications such as ascites, encephalopathy, variceal
bleeding, and hepatocellular carcinoma because of the
continual inflammatory response to the viral infection.
As many as 75% of HCV-positive patients in the United
States have the chronic form of HCV infection,3 most of
which will develop chronic hepatitis and progressive
fibrosis.9 Within 10 years, some of the fibrosis patients
will develop cirrhosis, while some others will not have
notable liver disease during their lifetime.10
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A number of studies have indicated the possibility of a
positive association between HCV disease outcome and
genetic polymorphisms. For example, many immunolo-
gical proteins may play a role in the response to HCV
antiviral treatment: in particular, interferons (IFNs),
tumor necrosis factor (TNF), cytokines, and chemokines.
Polymorphisms in several genes including MxA, PKR,
OAS,11 HLA, KIR, TNF,12 and MICA have been shown to
be associated with HCV clearance or persistence.13,14

Studies have indicated that single nucleotide poly-
morphisms (SNPs) in the IL10, CTLA, MxA, and LMP7
genes may influence the response to IFN-a treatment in
patients with chronic HCV15–17 along with variants in the
HLA.13,14 The strength of the immune response may
influence HCV-mediated fibrogenesis10 through cyto-
kines that stimulate extracellular matrix deposition such
as TNF. However, current genetic studies were unable to
identify the link between functional TNF SNPs and
histological severity or response to antiviral therapy.18

Conversely, inheritance of the MCP1 alleles may predis-
pose HCV patients to more severe hepatic inflammation
and fibrosis.19 A recent report has also implicated one
MICA allele in HCV clearance utilizing the same patient
set.20

The genetic associations of IL10 with treatment and the
role of inflammation in HCV disease led us to consider
the family of interleukin-10 (IL-10)-related cytokines that
has several cellular paralogs, including IL19, IL20, IL22,
IL24, and IL26, as candidate genes involved with HCV
clearence.21 IL-10 plays an important part in the regula-
tion of cellular immune responses and in the suppression
of proinflammatory cytokine secretion in a number of
different cell types. IL-10 is a cytokine synthesis
inhibitory factor that balances the TH1 and TH2 immune
response, and is involved in many aspects of human
disease.22,23 There is strong evidence for a substantial
genetic component in IL-10 production.24,25 The IL10
gene has been implicated in the response to a number of
diseases such as hepatitis B, pulmonary tuberculosis,
herpes zoster, cutaneous malignant melanoma, hepato-

cellular carcinoma fibrosis, gastric carcinoma, squamous
cell carcinoma, inflammatory bowel disease, and HIV.26–

34 The genetic neighbors of IL10 consisting of IL19, IL20,
and IL24 also modulate the TH1 and TH2 response,
suggesting that these recently discovered loci could also
be important in HCV clearance.35

A number of studies have examined the IL10 promoter
region SNPs and their associations with HCV suscept-
ibility as well as resistance to antiviral therapy. Current
therapy of chronic HCV infection is based on type I IFN-
a treatment along with ribavirin.36 The commercial IFN-a
preparations that are largely used for HCV therapy
consist of IFN-a2a or IFN-a2b subtypes.37 Some of these
studies indicate that there is a positive IL10 association
with susceptibility to chronic hepatitis C infection and
resistance to combined antiviral therapy38–41 and rapid
fibrosis39 while in others the association between IL10
promoter region SNPs and viral clearance or persistent
infection or severity of disease was not found.42–44 These
results further indicated the importance of evaluating
HCV clearance in a large set of patients for IL10, its
neighboring paralogs, and other genes in the region.

We set out to provide a comprehensive evaluation of
the association between IL10 and its neighboring para-
logs with HCV clearance vs persistence among infected
individuals from multiethnic cohorts while evaluating
linkage disequilibrium (LD) in the region. Several
polymorphisms located close to or within the IL10 gene
are associated with transcription levels45 and the nearby
flanking genes should be examined for their potential
impact on disease. The best-studied SNPs in the IL10
gene are in the promoter positions –1082 (rs1800896),
�819 (rs3021097), and –592 (rs1800872).46 In the present
study, we used 32 SNPs in the IL10 gene itself and an
additional 41 from the surrounding region of approxi-
mately 300 Kb to each side, which includes the genes
FNBP2, IKBKE, RASSF5, LGTN, DYRK3, MAPKAPK2,
TOSO, PIGR, FKSG87, and SARG along with the IL10
paralogs IL19, IL20, and IL24 (Figure 1). Then, we chose
SNPs that indicated a significant association with HCV

Figure 1 Locations and variation of SNPs in and around the IL10 gene on chromosome 1 with SNPs numbered as shown in Table 1.
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clearance, and tested them further by assessing different
genetic models. The corresponding haplotypes within
the haplotype blocks were estimated and examined for
an association with HCV clearance as well.

Results

The effects of IL10, its paralogs, and genetic polymorph-
isms in the flanking region were assessed for HCV
clearance by examining 54 polymorphic SNPs (Table 1).
The subjects examined were either African Americans
(91 clearance cases and 183 chronically infected matched
controls) or European Americans (108 clearance cases
and 245 chronically infected individuals) matched two
for one on ethnicity, HIV status, and gender.

In the single SNP analyses, there were several alleles,
genotypes, and haplotypes that had a significant
association with HCV clearance in African Americans
while no significant associations were observed for
alleles or haplotypes in European Americans (Table 2).
In the allelic tests, the strongest associations were seen
with three SNPs in IL10, rs6703630, rs6693899, and
rs3024498 (P¼ 0.03–0.004), as well as the SNPs in IL19,
rs2243191, and IL20, rs1400986, rs3024517, and rs2232360
(P¼ 0.05–0.01). Analyses of these seven loci remained
significant in the genotypic tests for both the additive
and/or dominant tests with the addition of rs2981573
(Table 2; P¼ 0.05–0.002). The two classical SNPs from the
proximal part of the IL10 promoter region, rs1800896
(�1082) and rs1800872 (�592), previously reported to be
associated with the response to HCV infection and
treatment that define the GCC, ACC, and ATA haplo-
types,46 did not show a significant association with
clearance in either of the racial groups for these tests
(P40.2). On the other hand, two out of three loci in the
distal part of the promoter reported to be associated with
the levels of IL-10 production (rs6693899 and
rs6703630)45 were significantly associated with the
chronic outcome of HCV infection in African Americans
(Table 2; P¼ 0.05–0.004).

Two regions of LD were apparent, with the first one
encompassing IL10 and a second one that included IL19
and IL20 (Figure 2). We analyzed these blocks of SNPs
with the EM algorithm implementation in Proc Haplo-
type47 to estimate haplotypes using loci that were
associated with HCV (Po0.05) in the previous analyses.
While the proximal SNPs (�1082 and �592) did not
show a significant association with clearance, due to
their role in the IL10 expression and previous reports of
association with this disease and numerous others, they
are included in both the single SNPs and haplotype
analyses. Overall, there were 10 haplotypes extending
over the IL10 region and six over the IL19/IL20 region
that were evaluated in clearance and chronic groups of
European Americans and African Americans (Table 3).

As in the single SNP analyses, almost all of the
haplotype-based associations observed were seen in
African Americans for the allelic, additive, and dominant
analyses (Table 3). Only one haplotype in the IL10 region,
AAGCG, was associated with HCV clearance, and the
association was observed in allelic, codominant, and
dominant models (odds ratio (OR)¼ 0.47–0.48, P¼ 0.03–
0.01). There were two haplotypes in the IL19/IL20 region
in African Americans significantly associated with HCV

clearance, the depleted CTGAAC (OR¼ 0.56–0.59,
P¼ 0.05–0.04) and the enriched TCAGGC (OR¼ 1.93–
2.7, P¼ 0.01–0.002). In addition, as a test of association of
extended haplotypes in the promoter region with
HCV,38–41 we analyzed the association of well-studied
proximal46 and distal haplotypes45 and HCV clearance
(Table 4). These results indicated that distal haplotypes
AAA (OR¼ 0.38, P¼ 0.002–0.003), and TGC (OR¼ 1.52,
P¼ 0.04–0.03), but not proximal haplotypes in IL10 are
associated with clearance of HCV in the African-
American population.

Discussion

Understanding the genetic basis of host-limiting infec-
tion of HCV (clearance without any HCV-specific
therapy) provides a direct approach to finding clues to
treatment of this chronic infection. Given previous
reports of the role of IL10 variants in both HCV therapy
and clearance, we sought to evaluate the role of genetic
variants at this gene and its neighbors. We examined a
total of 274 African Americans (91 clearance cases and
183 chronically infected matched controls) and 353
European Americans (108 clearance and 245 chronic).
In essentially African Americans only, there were several
alleles, genotypes, and haplotypes in IL10 and the IL19/
IL20 genes that had significant associations with HCV
clearance in African Americans. Most of these SNPs have
not been associated with HCV outcome in the past,
which opens new avenues for candidate gene testing for
this disease.

An examination of the IL10 region found at least two
large haplotype blocks: one around IL10 and a second
one encompassing IL19 and IL20. These are regions with
little evidence for historical recombination and only a
limited number of common haplotypes observed.48 The
boundaries of blocks and specific haplotypes were
similar across population groups, but additional struc-
ture was visually evident when examining r2 and |D0| in
African Americans than European Americans (Figure 2).
As expected, African Americans had more common
haplotypes,48 and analyses of some of these indicated
possible associations with HCV (Table 3, P¼ 0.05–0.002).

Several recent studies suggested that IL10 polymorph-
isms may influence HCV outcome in the host38–41,49 while
others have not found associations.42,43 Generally, these
are concentrated on the proximal IL10 promoter poly-
morphisms that have been associated with the differ-
ential IL-10 expression,46,50 while other polymorphisms,
particularly those in the distal part of the promoter, have
also been implicated.45 More recently, different proximal
and distal polymorphism effects on IL-10 production
have provided a more complex picture of gene expres-
sion.51 Concurrently, HCV treatment and IL10 candidate
gene studies have suggested an association of extended
haplotypes in the promoter region.38–41 As a test of these
hypotheses, we performed a separate analysis using the
well-studied proximal46 and distal haplotypes45 (Table 4).
We did not observe any positive associations between the
proximal IL10 promoter SNPs of �1082 and �592
defining the GCC, ACC, and ATA haplotypes46 with
HCV clearance (Table 4). While the functional control of
expression by the �1082 and �592 SNP containing
haplotypes is very well supported,40,41,45,52,53 their
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reported role in natural HCV clearance and persis-
tence38–41 is likely only at most a mild effect. On the other
hand, in the distal region of the promoter, low-produc-

tion haplotype AAA (Table 4) was associated with the
chronic infection only in African Americans (OR¼ 0.38,
P¼ 0.003–0.002), while analysis of the high-production

Table 1 SNPs examined — nearby gene, locus names, polymorphism types, location, and minor allele frequencies of SNPs screened in the
study of HCV clearance1

European Americans African Americans

No. Gene Locusa Polymorphism Positionb Allelesc Clearance
(n¼ 108)

Chronic
(n¼ 245)

Clearance
(n¼ 91)

Chronic
(n¼ 183)

1 FNBP2 rs9242 3’ UTR �308.44 T/C 0.45 0.46 0.51 0.47
2 IKBKE rs1539243 Syn (Ile-Ile) �298.05 C/T 0.19 0.14 0.11 0.14
3 RASSF5 rs944769 Intronic �253.76 T/G 0.48 0.49 0.77 0.77
4 RASSF5 rs11589 3’ UTR �183.90 T/C 0.31 0.31 0.32 0.31
5 intergenic rs13208 Intergenic �117.68 C/T 0.42 0.38 0.44 0.42
6 IL10 rs6687786 30 UTR �4.62 C/T 0 0 0.09 0.06
7 IL10 rs6697497 30 UTR �4.38 G/A 0 0 0.09 0.07
8 IL10 rs3024498 30 UTR �4.31 A/G 0.28 0.28 0.09 0.17
9 IL10 IL-10 8161 30 UTR �4.17 A8/A7 0 0 0.10 0.07
10 IL10 rs3024496 30 UTR �3.98 C/T 0.50 0.49 0.60 0.57
11 IL10 rs3024509 Intronic �2.54 T/C 0.07 0.07 0.02 0.01
12 IL10 IL-10 6520 Intronic �2.52 G/T 0 0 0.01 0
13 IL10 rs3024494 Intronic �2.49 G/A 0 0 0.06 0.05
14 IL10 rs1878672 Intronic �2.13 C/G 0.47 0.47 0.24 0.31
15 IL10 rs1554286 Intronic �1.61 C/T 0.17 0.17 0.40 0.36
16 IL10 rs1518110 Intronic �0.98 G/T 0.22 0.21 0.42 0.38
17 IL10 IL-10 4099 Promoter �0.10 G/A 0 0 0 0.01
18 IL10 rs5743625 Promoter 0.28 C/T 0.01 0.01 0.01 0
19 IL10 rs3024489 Promoter 0.41 G/T 0 0 0.03 0.03
20 IL10 rs1800872 Promoter 0.57 C/A 0.22 0.23 0.43 0.38
21 IL10 rs1800895 Promoter 0.63 G/A 0.01 0 0 0.01
22 IL10 rs1800871 Promoter 0.80 C/T 0.23 0.23 0.42 0.38
23 IL10 rs1800896 Promoter 1.06 A/G 0.50 0.50 0.32 0.36
24 IL10 rs1800893 Promoter 1.33 A/G 0.49 0.50 0.65 0.62
25 IL10 rs5743624 Promoter 1.47 C/T 0.05 0.03 0.05 0.03
26 IL10 rs5743623 Promoter 1.73 C/A 0.01 0.01 0.01 0.03
27 IL10 rs6693899 Promoter 2.71 C/A 0.37 0.38 0.27 0.39
28 IL10 rs6703630 Promoter 2.80 G/A 0.27 0.29 0.19 0.32
29 IL10 rs1800890 Promoter 3.53 A/T 0.39 0.39 0.21 0.28
30 IL19 rs2243155 Intronic 60.14 T/C 0 0 0.05 0.05
31 IL19 rs2243156 Intronic 60.38 G/C 0.09 0.09 0.18 0.13
32 IL19 rs2243158 Intronic 61.80 G/C 0.10 0.09 0.19 0.12
33 IL19 rs2243161 Intronic 62.26 G/A 0 0 0.12 0.15
34 IL19 rs2243164 Intronic 62.73 T/C 0 0 0.16 0.12
35 IL19 rs2243168 Intronic 63.55 A/T 0.09 0.09 0.31 0.27
36 IL19 rs2073186 Intronic 64.79 C/T 0.27 0.24 0.39 0.37
37 IL19 rs2073185 Intronic 64.89 G/A 0.16 0.12 0.03 0.04
38 IL19 rs2243176 Intronic 66.61 C/T 0.18 0.14 0.08 0.11
39 IL19 rs2243191 Non-syn (Ser-Phe) 70.12 C/T 0.25 0.23 0.23 0.15
40 IL20 rs1713239 Intergenic 91.64 C/G 0.16 0.13 0.04 0.05
41 IL20 rs1400986 Intergenic 92.85 C/T 0.16 0.18 0.30 0.40
42 IL20 rs3024517 Intronic 94.41 A/G 0.15 0.17 0.12 0.19
43 IL20 rs2981573 Intronic 94.74 A/G 0.25 0.21 0.22 0.15
44 IL20 rs2232360 Intronic 94.82 G/A 0.26 0.22 0.22 0.15
45 IL20 rs1109461 Intronic 95.96 C/T 0.01 0.01 0.27 0.26
46 IL20 rs1518108 Intergenic 97.34 C/T 0.42 0.49 0.52 0.58
47 IL24 rs3093426 Intronic 127.64 G/A 0.01 0.01 0.24 0.20
48 IL24 rs1150258 Non-syn (His-Tyr) 129.07 C/T 0.42 0.50 0.26 0.33
49 TOSO rs188334 Intronic 133.78 A/G 0.41 0.49 0.22 0.20
50 PIGR rs291102 Non-syn (Val-Ala) 160.64 G/A 0.13 0.08 0.89 0.90
51 PIGR rs2275531 Non-syn (Ser-Gly) 163.28 C/T 0.40 0.48 0.20 0.22
52 Intergenic rs1890865 Intergenic 206.92 A/G 0.04 0.02 0.55 0.56
53 Intergenic rs1890866 Intergenic 217.06 G/A 0.03 0.05 0.02 0.01
54 SARG rs10877 30 UTR 246.34 C/T 0.19 0.23 0.31 0.32

The following loci were found to be invariable in the present data set (frequency o1% in both African Americans, and European Americans):
rs3024510, rs1518111, rs3024506, IL10 3462, IL10 2931, IL10 2410, IL10 1974, and IL10 1273 from the IL10 region, and rs2297542, rs1129431,
rs1129432, rs110514, rs113528, rs7868, rs2243173, rs3024523, rs291109, rs3093431, rs3093446, and rs2054779 from the surrounding regions.
aLoci shown in bold are for Po0.05 in the simple allelic w2 case–control tests, and followed up in subsequent analysis.
bPosition (kb) is relative to the IL10 gene’s start of transcription on the genomic sequence.
cMinor allele is the second one shown whose frequency is reported in the table.
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haplotype TGC suggests association with HCV clearance
(dominant model, OR¼ 1.52–2.55, P¼ 0.04–0.03).

Overall, our results indicate that selected IL10 and
IL19/IL20 gene SNPs and haplotypes are involved in
clearance of HCV in the African-American population
and do not support previous reports of associations
in European Americans. This disparity may be due to the
ethnic differences, but may also be related to the route of
infection. That associations were only seen in African
Americans who are largely drawn from an intravenous
drug user (IVDU) cohort and not in European Americans
largely drawn from hemophiliac cohorts could be due to
infectious doses that are lower in needle-borne transmis-
sion as compared to blood transfusions. The recent
association of HLA and NK cell receptor genes with
HCV clearance saw genetic effects at low infectious
doses (only in those who did not receive blood
products).54 A similar infectious dose response for
CMV with the murine NK cell receptor Ly49 H has also
been observed.55,56 Together with the observation that
essentially all significant associations were seen in low-
dose IVDUs who happen to be African American in this
study, our results support further evaluation of variants
at IL10, IL19, and IL20 in HCV clearance.

Since in this study we applied allelic tests to 54
different SNPs, our significance levels for P-values
would have to be lowered to the approximately
Po0.001 level to distinguish significant test results from
those that appear by chance alone.56–59 None of the tests
of association with HCV clearance were significant after
this ‘Bonferroni’ correction (the lowest value was
P¼ 0.002 (Table 2)). However, eight different loci showed
significance (0.05oPo0.002) in African Americans,
when we expected fewer (approximately 2.7 with the
experiment-wide error rate of 5%). If these 54 tests were

independent, such a distribution of P-values could not be
attributed to random events alone (one-tailed binomial
expectations, P¼ 0.005). Thus, we expect that five of
these eight Po0.05 loci at IL10, IL19, and IL20 reveal
biologically significant associations with HCV clearance
in African Americans. In contrast, the analysis of
European Americans found only one P-value o0.05,
which very likely results from multiple testing.

While we cannot point to one genetic variant as a
cause in HCV clearance, there is a significant excess of
associations with IL10, IL19, and IL20 variants. The
suggestive results with IL19 and IL20 are intriguing,
given their newly discovered roles in modulating the
TH1 and TH2 response where IL10 is already known to
be intimately involved.35 Research on larger well-defined
cohorts will be needed to test for what are potentially
weak effects at IL10 and IL19/IL20.

The association seen with IL19 is particularly promis-
ing, given this gene’s involvement in chronic inflamma-
tory diseases through suppressing the TH1 response and
inducing TH2.60 The many associations seen at IL20,
which is important in the inflammatory response61 and
in enhancing growth of multipotential hematopoietic
progenitor cells,62 suggest that this gene may be
important in HCV clearance. IL10 and its neighboring
paralogs (IL19 and IL20) may provide a link between
host genetic polymorphisms and HCV clearance through
modulating the TH1 and TH2 response in concert.
Further research on the functional implications of the
IL10, IL19, and IL20 genetic polymorphisms and the HCV
clearance is needed to clarify mechanisms of action.

Searches with additional candidate genes and novel
genetic approaches for HCV clearance can further our
understanding of the HCV progression and outcome.
Some new approaches, such as mapping by admixture

Figure 2 Plot of LD across the IL10 region. Higher values of r2 and |D0| represented by the red part of the spectrum indicate elevated levels
of LD between the two SNPs plotted on both the X and Y axes and numbered as shown in Table 1. Two distinct LD groups in the IL10 and
IL19/IL20 regions are evident from examination of African Americans (a) and European Americans (b).
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LD, hold promise,63 especially because of the much lower
rate of clearance in African Americans compared to
European Americans.7 While the incidence of newly
acquired hepatitis C infection has diminished in the
United States, HCV infection remains a high-priority
problem that needs to be addressed utilizing many
different approaches. In this sense, discovery of genes
associated with the HCV clearance is a crucial step that
can result in novel strategies for patient treatment and
recovery. The results of this study could have implica-
tions for the identification of HCV clearance mechanisms
as well as therapy decisions.

Methods

Study design
A total of 274 African Americans (91 clearance cases and
183 chronically infected matched controls) and 353
European Americans (108 clearance cases and 245
chronic infected matched controls) were chosen for a
nested case–control study design. Individuals were
selected from the ALIVE, MHCS, and HGDS cohorts
for HIV-1/AIDS.20 Case subjects were clear of viremia
without any HCV-specific treatment, demonstrated by
Z2 instances separated by a minimum of 6 months, in
which HCV RNA could not be detected in serum. Prior
infection was substantiated by detection of HCV anti-
body (anti-HCV). Chronically infected control subjects
selected from the same cohort had anti-HCV and HCV
RNA in serum for Z6 months. Control subjects were
matched 2:1 to case subjects in the same cohort on the
basis of HIV status, gender, geographic location, and
race. These factors were chosen since HIV status and race
are determinants of viral clearance in the ALIVE
cohort.7,13

Genotyping
DNA was extracted from whole blood using the standard
Qiagen protocol (Hilden, Germany) and by phenol–
chloroform extraction.64 SNP genotyping was performed
by PCR on a Perkin Elmer Thermal Cycler 9700 (Foster

City, CA, USA). All PCR reactions were performed using
10 ng DNA in a total volume of 10 ml. The PCR products
were pooled together to make one master plate of all
DNA. Up to 10 different DNA fragments were combined
in a 384-well plate format. Subsets of the products were
checked for amplification on agarose gels. We tested 54
SNPs in the IL10 region (Figure 1), which included the
genes FNBP2, IKBKE, RASSF5, LGTN, DYRK3, MAP-
KAPK2, TOSO, PIGR, FKSG87, and SARG along with
IL10 and its paralogs IL19, IL20, and IL24, for an
association with HCV clearance vs persistence during
infection. A total of 24 SNPs were sampled within IL10,
and 30 more from the surrounding 7300 kb region
(Table 1).

SNPs were genotyped using two different methods: a
multiplexed length-modified single base extension (SBE)
and TaqMan. A length-modified SBE protocol from
Applied Biosystems (AB, Foster City, CA, USA) was
used for genotyping SNPs. Exonuclease I and shrimp
alkaline phosphatase (SAP) enzymes were used to clean
the amplification products, and SBE was performed
using the SNaPshot Kit made by AB (Foster City, CA,
USA),65,66 which attaches a fluorescently labeled ddNTP
to the extension primer. An additional SAP clean-up was
performed to modify unincorporated ddNTPs using
SAP. The reaction was added to a combination of
formamide and GS-120 LIZt marker for size separa-
tion-based genotyping on the AB 3100 Genetic Analyzer.
In addition, some genotyping was performed using
TaqMan assay-by-design technology. Reactions were
carried out in 384-well format with a total volume of
5ml. The reactions were amplified using AB 9700 PCR
machines and fluorescence was quantified with an AB
7900. The scoring process was simplified with automa-
tion using Genotyper and GeneMapper for SBE, or SDS
software for TaqMan (AB). Some cases and controls were
not typed due to lack of suitable samples or genotyping
failures.

Statistical analysis
All analyses were perfomred with SAS Version
8.2. software.47 First, all loci were analyzed for LD

Table 4 Association with the HCV clearance with proximal and distal haplotypes in the IL10 promoter region in African Americans

Haplotype frequency Allelic Codominant Dominant

Haplotypes Clearance (n (%)) Chronic (n (%)) Odds ratio P Hazard ratio P Odds ratio P

Proximal haplotypes46

GCC 52 (30.8) 125 (35.7) 0.84 0.38 0.82 0.32 0.89 .64
ACC 42 (24.9) 88 (25.1) 0.96 0.85 0.97 0.91 1.07 0.93
ATA 75 (44.4) 137 (39.1) 1.22 0.31 1.16 0.44 1.3 0.44

Distal haplotypes41

AAA 15 (8.9) 73 (20.9) 0.38 0.002 0.38 0.002 0.38 0.003
AGA 11 (6.5) 24 (6.9) 0.96 0.9 0.96 0.9 1.05 0.89
AGC 3 (1.8) 3 (.9) 2.0 0.4 2.0 0.4 2.0 0.4
TAA 10 (5.9) 29 (8.3) 0.7 .34 0.7 0.34 0.73 0.44
TAC 3 (1.8) 8 (2.3) 1.0 1.0 1.0 1.0 1.0 1.0
TGA 8 (4.7) 9 (2.6) 1.79 0.24 1.79 0.24 2.26 0.14
TGC 119 (70.4) 204 (58.3) 1.52 0.04 1.52 0.04 2.55 0.03

Proximal haplotypes include SNPs at positions �1082 (rs1800896), �819(rs1800871), and �592 (rs1800872) relative to the transcription start
site; distal haplotypes include SNPs at positions �3575 (rs1800890), �2849 (rs6703630), and �2763 (rs6693899) relative to the transcription
start site.
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(SAS/Genetics, PROC ALLELE). Two historic haplotype
groups were identified: IL10 and IL19/IL20 (Figure 2).
Each locus was also tested for Hardy–Weinberg (H-W)
equilibrium (SAS/Genetics, PROC ALLELE). Loci that
deviated from the predictions of H-W equilibrium
were eliminated from further analysis, as they were
likely to originate from low-frequency genotyping errors
or other technical difficulties. Allele frequencies were
calculated for HCV clearance and chronically infected
individuals for each SNP locus. Loci with minor allelic
frequencies o3% in both racial groups were not
analyzed further.

Each variable SNP was evaluated for its association
with HCV clearance in two different racial groups,
European Americans and African Americans, by a log
likelihood ratio w2 test.47 In the subsequent tests, those
loci that were significantly associated with HCV
(Po0.05) , or those previously reported to be associated
with HCV clearance in the literature (�1082 and �592
at IL10), were evaluated further.

Three different models of inheritance were used for
these analyses: dominant, codominant, and allelic. Each
allele was tested independently using conditional logistic
regression (CLR)67,68 on the data, with cases and controls
matched by HIV status, sex, geographic location, and
race. We further tested for additive genotypic association
using three possible genotypes in each locus to calculate
hazard ratios (HRs). Finally, we combined rare homo-
zygotes with the heterozygotes and tested them in the
same category against the common homozygotes for the
association with HCV. ORs were calculated using PROC
PHREG47 to examine the likelihood of having the
persistent form of HCV infection when carrying a
specific allele. For the convenience of presenting, in the
text, we indicated the range of ORs and HRs across the
three models tested for each SNP and haplotype. P-
values of CLR analysis reflected the statistical signifi-
cance of the above analyses.

An association between SNP haplotypes and HCV
clearance was also evaluated. Haplotypes within the two
haplotype block regions around IL10 and IL19/IL20
(Figure 2) were estimated using the expectation-
maximization (EM) algorithm in PROC HAPLOTYPE
(SAS/Genetics). Then, high-probability haplotypes with
frequencies 41% were tested for an association with
HCV clearance using CLR, first as alleles and then as
diplotypes in an additive codominant model. Finally, a
dominant model of inheritance was used whereby
heterozygotes and homozygotes for each haplotype were
combined into one category, and then tested against
another category where this particular haplotype was
absent.
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